High In Vitro Resistance Barrier for the Bictegravir + Lenacapavir Combination

Michelle L D'Antoni, Silvia Chang, Priyanka Arora, Helen Yu, Nicolas Margot, Christian Callebaut

Gilead Sciences, Inc., Foster City, CA, USA

Response) are for personal use only and may not be reproduced without writter permission of the authors

Conclusions

- . In vitro, the combination of bictegravir (BIC) + lenacapavir (LEN) demonstrated a high barrier to the emergence of resistance
- · Virologic breakthrough was completely inhibited when both BIC and LEN were above the protein-adjusted 95% effective concentration (PAEC₀₅)
- BIC demonstrated synergistic anti-HIV-1 activity and no antagonism when combined with LEN
- These in vitro data suggest that a combination of BIC/LEN may have a high barrier to resistance and a high degree of forgiveness, supporting the ongoing clinical investigation of a BIC/LEN single tablet regimen (STR)

Plain Language Summary

- · Doctors use bictegravir (BIC) and lenacapavir (LEN) to treat people with human immunodeficiency virus (HIV) infection
- · Researchers are developing a single tablet that contains both BIC and LEN
- . In this study, researchers tested whether HIV-infected cells in a lab could become resistant to BIC and LEN
- · Resistance means the virus stops responding to the medicine
- · They treated the cells with BIC and/or LEN, then looked for mutations (changes in the virus) that could cause resistance
- . The results showed that the combination of BIC and LEN worked well to prevent resistance
- · When researchers used BIC and LEN levels similar to those used in people, they found no mutations that could cause resistance in the virus
- These results support ongoing research into the combination of BIC + LEN together to treat people with HIV infection

Introduction

- · A combination of BIC and LEN is being developed as an STR for people with HIV who are virologically suppressed on complex regimens
- BIC is a global guideline-recommended integrase strand-transfer inhibitor (INSTI) with a high barrier to resistance²⁻⁵
- LEN is a first-in-class HIV-1 capsid inhibitor, with no documented de novo resistance in the absence of prior exposure^{2,6};
- · There is a strong rationale for combining BIC and LEN, based on:
- Distinct HIV-1 targets with no cross-resistance^{1,2}
- High potency²
- Little to no circulating resistance⁸⁻¹⁰
- · The barrier to resistance and forgiveness level for this combination have not been

Objective

. To characterize the in vitro barrier to resistance and antiviral drug interaction effects of a BIC + LEN combination

Clinical and In Vitro Characteristics of BIC and LEN Dosed Orally Daily

	BIC	LEN	
Clinical C _{trough} 11,a	High: ~28-fold above PAEC ₉₅	High: ~28-fold above PAEC ₉₅	
Median half-life ²	17.3 hours	10-12 days	
Integrase-DNA dissociation half-life ¹²	163 hours	N/A	
Antiviral activity ^{13,14,b}	2-3 log	2-3 log	
HIV target ^{5,7}	Integrase	Capsid	
Clinical resistance prevalence ^{5,7,15}	Low	Low	
Clinical resistance ^{2,5,7,16}	Multiple RAMs required for clinically significant resistance; rare cases of treatment-emergent INSTI-R; no documented naturally occurring RAMs	RAM patterns (Q67H + K70R; M66I) have been observed in clinical studies; no documented naturally occurring RAMs	
RAM replicative capacity ^{7,17}	Moderate	Very low	
Barrier to resistance ^{2,5,7,15}	High	Moderate	
Cross-resistance ^{2,13}	Active against CAI-R variants	Active against INSTI-R variants	

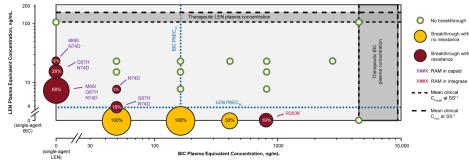
*Mean C_{suspi} at steady state¹¹ of 4540 (BIC) and 108 (LEN) rights, are ~28-fold higher than PAEC₆₅ values of 162 (BIC) and 3.88 (LEN) rights. wit; CAI-R, capsid assembly inhibitor resistance; C_{snup}, trough plasma concentration; INSTI-R, integrase strand-transfer inhibitor EN, lenacapavir; PAEC₈₆, protein-adjusted 95% effective concentration; RAM, resistance-associated mutation.

Methods

Virologic Breakthrough

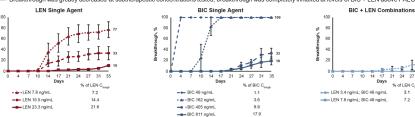
- MT-2 cells were infected in bulk with HIV-1_{IIIB} at a multiplicity of infection (MOI) of ~0.05 and were subsequently exposed to fixed BIC and/or LEN concentrations
- Antiretroviral concentrations were selected based on trough concentrations at steady state following once-daily maintenance doses of BIC 75 mg + LEN 50 mg as administered during the Phase 2 portion of the ARTISTRY-1 clinical study11
- · Wells were visually inspected on a light microscope for the development of virus-induced cytopathic effect (CPE) over 35 days
- · Viruses from cultures showing CPE were genotyped using Illumina MiSeq (San Diego, CA, USA) next-generation sequencing by Seq-IT (Kaiserslautern, Germany); detection threshold was ≥ 15% frequency
- Resistance-associated mutations (RAMs) in integrase and capsid:
- INSTI resistance (INSTI-R) substitutions: T66I/A/K, E92Q/G, T97A, F121Y. Y143R/H/C, S147G, Q148H/K/R, N155H/S, R263K Capsid inhibitor resistance (CAI-R) substitutions: L56I, M66I, Q67H/K/N,
- K70H/N/S/R, N74D/S, A105S/T, T107A/C/N/S

Combined Antiviral Activity

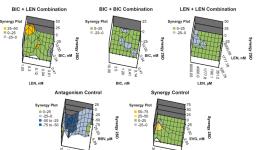

- MT-2 cells were infected in bulk with HIV-1_{IIIR} at an MOI of ~0.01 and were
- subsequently exposed to pairwise BIC and LEN concentrations
- The development of CPE at Day 5 was assessed using a luminescence assay (Cell TiterGlo; Promega, Madison, WI, USA)
- · The combination effect of each tested pair of inhibitors was determined using the MacSynergy II program (University of Michigan, Ann Arbor, MI, USA)
- . The calculated combination volume was used to define synergy or antagonism for
- Highly synergistic (≥ 100), moderately synergistic (≥ 50 to < 100), additive (≥ -50 to < 50), moderately antagonistic (≥ -100 to < -50), and highly antagonistic (< -100)

Clinical and In Vitro Drug Concentrations

	BIC	LEN
Human serum shift13,18	44.0	17.4
EC ₉₅ , nM ^{13,18}	8.3	0.23
PAEC ₉₅ , nM	361	4.00
PAEC ₉₅ , ng/mL	162	3.88
Mean clinical Ctrough at SS, ng/mL11	4540	108
Mean clinical C _{trough} at SS, nM*	10,102	112
Cell culture equivalent (C _{trough}), nM	230	6.41
Cell culture concentration range, nM	2.5-230	0.12-6.41


entration: LEN, lenacapavir: PAEC_{ec}, protein-adjusted 95% effective

Breakthrough Frequency and Emergent Resistance for Breakthrough Resistance Selections



centration; LEN, lenacapavir; PAECss, protein-adjusted 95% effective concentration; RAM, resistance-associated mutation; SS, steady state

- · Cells exposed to BIC or LEN alone showed a dose-dependent breakthrough frequency
- Emergent RAMs were seen in capsid (M66I, Q67H, and N74D) and integrase (R263K) at concentrations 5- to 14-fold below clinical trough plasma concentration (C_{trough})
 - Breakthrough was greatly decreased at subtherapeutic concentrations tested; breakthrough was completely inhibited at levels of BIC + LEN above PAEC_{gc}

In Vitro Combination Antiviral Activity

2SD, 2 standard deviations: BIC, bioteoravir: d4T, stavudine: EVG, elviteoravir: LEN, lenacapavir: RBV, ribavirir: TAF, tenofovir alafenamid

In Vitro Combination Antiviral Activity

In Vitro Drug	Synergy/Antagonism Volumes, µM².%²		Combination	
Combination	Mean Synergy ± SD	Mean Antagonism ± SD	Effect	
BIC + LEN	148 ± 13	-14 ± 10	Highly synergistic	
LEN + LEN Additivity control	18 ± 18	-16 ± 6	Additive	
BIC + BIC Additivity control	5 ± 5	-10 ± 10	Additive	
TAF + EVG Synergy control	201 ± 42	-20 ± 19	Highly synergistic	
RBV + d4T Antagonism control	5 ± 5	-902 ± 299	Highly antagonistic	

Acknowledgments: This work was performed by Gilead Sciences, Inc. Medical writing support was provided by Noel Curtis, PhD (Aspire Scientific Ltd, UK), and was funded by Gilead Sciences, Inc.

Correspondence: Michelle D'Antoni, michelle.dantonibrogan@glead.com

References: 1. Gland Sciences, Inc., https://www.gland.com/heroineses/edaila/2024/crientific-feed articles/populity/ed-dai-gland-presents-research-data-across-ks-broad-articles-ed-septime-ed-septime-daila-gland-presents-research-data-across-ks-broad-articles-ed-septime-ed-se